residual smoothing造句
例句與造句
- Convergence is accelerated by means of local time stepping , implicit residual smoothing . the numerical results have been obtained for the flows over n ac ago 12 or rae2822 airfoils
并且基于點云離散結(jié)構(gòu),引入了當?shù)貢r間步長、殘值光顧等加速收斂技術(shù),數(shù)值模擬了對稱和非對稱翼型繞流,獲得較好的計算結(jié)果。 - In order to accelerate the convergence , residual smoothing and local time stepping were employed . in the same time , by improving prolongation operator , a new multi - grid scheme which can combine well with the algorithm of this thesis
為加速計算收斂速度,除了采用當?shù)貢r間步長和局部殘差光順技術(shù)外,通過改造插值算子,提出了一種能夠與本文算法很好地結(jié)合的多重網(wǎng)格法。 - In order to accelerate the convergence speed , we employ the local time step , and implicit residual smoothing methods . finally , we use this method to get the steady solution of the flow around naca0012 and naca4412 airfoil at very low speed and some basic unsteady solution
本文對在低馬赫數(shù)下繞naca0012翼型和naca4412翼型的定常流場進行了求解,結(jié)果和實驗基本吻合,并對非定常運動情況進行了初步模擬研究,得出了一些有意義的結(jié)果。 - 4 . a 2 - d and 3 - d euler equations and n - s equations are solved using the cell - centered finite volume method and four - step runge - kutta scheme on the cartesian grids with standard convergence acceleration techniques such as local time stepping , enthalpy and implicit residual smoothing
使用jameson中心有限體積法和runge - kutta時間推進方法,求解了關(guān)于二維、三維復雜流場的euler 、 navier - stokes方程,采用了當?shù)貢r間步長、隱式殘值光順等多種加速收斂方法。 - The viscid flux is discretized by second - order central difference scheme . baldwin - lomax turbulence model is implemented in navier - stokes flow solver . for steady - state calculations , a four - stage runge - kutta scheme with convergence acceleration techniques such as local - time stepping and implicit residual smoothing is used
其中,定常計算中的時間推進采用四步runge ? kutta方法,并應(yīng)用了當?shù)貢r間步長、隱式殘值光順等加速收斂措施;非定常計算中的時間推進采用jameson的隱式雙時間方法。 - It's difficult to find residual smoothing in a sentence. 用residual smoothing造句挺難的
- The explicit method is widely used for its simpleness and little memory consumed with local time step and variable coefficients implicit residual smooth to accelerate the convergence procedure . according to yoon and jameson ' s ideas , an efficient implicit lu - sgs algorithm is carefully constructed by combing the advantages of lu factorization and symmetric - gauss - seidel technique in such a way to make use the l and u operators scalar diagonal matrices , thus the numeric algorithm requires only scalar inversion . the computational efficiency is greatly improved with this scheme
顯式方法具有簡單,消耗內(nèi)存小等優(yōu)點,并采用當?shù)貢r間步長、變系數(shù)隱式殘值光順等加速收斂措施,在定常流動的模擬中得到了廣泛的應(yīng)用;根據(jù)yoon和jameson提出的簡化正、負矩陣分裂,構(gòu)造的l 、 u算子只需進行標量對角陣求逆,極大提高了流場數(shù)值求解過程的計算效率;采用newton類型的偽時間子迭代技術(shù)使時間推進精度提高至二階。 - In this paper , the upwind scheme and the central scheme are presented for solving 3 - d n - s equations using the cell - center finite volume spatial discretization and four - stage runge - kutta time stepping scheme , with standard convergence acceleration techniques such as local time stepping and implicit residual smoothing
在n - s方程的數(shù)值計算上,采用了中心差分格式和迎風格式,用格心格式的有限體積法進行了空間離散,用四步龍格?庫塔法作顯式時間推進,并采用了當?shù)貢r間步長和隱式殘差光順等加速收斂措施。 - The cell - centered symmetric finite volume arithmetic and runge - kutta time stepping scheme are performed to solve euler equation . the two order and four order artificial dissipation is introduced for stability , local time stepping and implicit residual smoothing technique is applied to save computer time
在求解euler方程方面,采用格心格式的有限體積法進行空間離散,四步runge - kutta法作時間推進,二階、四階人工耗散作為穩(wěn)定措施,還采用當?shù)貢r間步長和隱式殘值光順提高收斂速度。